Explore chapters and articles related to this topic
Ni, 28]
Published in Alina Kabata-Pendias, Barbara Szteke, Trace Elements in Abiotic and Biotic Environments, 2015
Alina Kabata-Pendias, Barbara Szteke
Nickel occurs mainly at +2 oxidation state, which may change up to +4. It reveals both chalcophilic and siderophilic affinity, and readily combines with Fe. Therefore, Ni–Fe compounds are common in both the Earth’s core and meteorites. The Ni–Fe alloy of the Earth’s core (called barysphere or NIFE) is composed of Fe/Ni within the ratio of 11:1. The great affinity of Ni for S results in their association with various compounds and minerals. The main ores of Ni are composed mainly of pentlandite, (Ni,Fe)9S8, and pyrrhotite, Fe1−xNi. In rocks, Ni occurs primarily as sulfides (millerite, NiS), arsenides (nickeline, NiAs), and antimonides (ullmannite, NiSbS). Nickel is also associated with several Fe minerals and forms sulfides and sulfarsenides with Fe and Co. During weathering, it is coprecipitated with Fe and Mn oxides, and becomes included in their minerals (e.g., goethite, limonite). Nickel may also be associated with carbonates, phosphates, and silicates. Organic matter (OM) and clay minerals exhibit a strong ability to absorb Ni; thus, it may be concentrated in some coals and oil, as well as in bottom sediments rich in OM.
Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden - constraints from solubility modelling
Published in GFF, 2020
Exploration during the last three decades summarized below has provided a strong indication that the style of mineralization found at Håkansboda and Tunaberg share more genetic links to SAS-type deposits than SVALS-type deposits. Exploration activities around Håkansboda in the 1980s led to the unexpected discovery of the SAS-type Lovisa Zn-Pb deposit. In a synthesis of geological work stemming from a preceding exploration campaign, Carlon & Bleeker (1988) regarded the Håkansboda Cu deposit to have formed in the vent zone of local stratiform Zn-Pb and Fe oxide mineralizations. At around the same time, Hedström et al. (1989) found that stratabound dolomite-hosted Cu mineralization occurs in the Burkland area at the Zinkgruvan deposit. The Burkland mineralization occurs in the stratigraphic footwall to the most proximal part of the Zinkgruvan stratiform Zn-Pb-Ag deposit. Subsequent mineralogical studies documented the presence of numerous Co and Ni minerals, including cobaltite, cobaltpentlandite, safflorite, nickeline and breithauptite, in the Burkland Cu mineralization and mineralogical similarities to parageneses at Tunaberg and Håkansboda (Andersen 2009; Bjärnborg 2009). Furthermore, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) data published by Axelsson & Rodushkin (2001) showed that sphalerite from the Zinkgruvan stratiform Zn-Pb-Ag deposit is Co-rich, further supporting a genetic link to the Burkland Cu mineralization.
Abstracts from the 2017–2018 Mineral Deposits Studies Group meeting
Published in Applied Earth Science, 2018
L. Santoro, St. Tshipeng Yav, E. Pirard, A. Kaniki, G. Arfè, N. Mondillo, M. Boni, M. Joachimski, G. Balassone, A. Mormone, A. Cauceglia, N. Mondillo, G. Balassone, M. Boni, W. Robb, T. L. Smith, David Currie, Finlay Stuart, John Faithfull, Adrian Boyce, N. Mondillo, C. Chelle-Michou, M. Boni, S. Cretella, G. Scognamiglio, M. Tarallo, G. Arfè, F. Putzolu, M. Boni, N. Mondillo, F. Pirajno, N. Mondillo, C. Chelle-Michou, M. Boni, S. Cretella, G. Scognamiglio, M. Tarallo, G. Arfè, Saltanat Aitbaeva, Marina Mizernaya, Boris Dyachkov, Andrew J Martin, Iain McDonald, Christopher J MacLeod, Katie McFall, Hazel M Prichard, Gawen R T Jenkin, B. Kennedy, I. McDonald, D. Tanner, L. Longridge, A. M. Borst, A. A. Finch, H. Friis, N. J. Horsburgh, P. N. Gamaletsos, J. Goettlicher, R. Steininger, K. Geraki, Jonathan Cloutier, Stephen J. Piercey, Connor Allen, Craig Storey, James Darling, Stephanie Lasalle, A. Dobrzanski, L. Kirstein, R. Walcott, I. Butler, B. Ngwenya, Andrew Dobrzanski, Simon Howard, Lore Troalen, Peter Davidson, Rachel Walcott, Drew Drummond, Jonathan Cloutier, Drew Drummond, Adrian Boyce, Robert Blakeman, John Ashton, Eva Marquis, Kathryn Goodenough, Guillaume Estrade, Martin Smith, E. Zygouri, S. P. Kilias, T. Zack, I. Pitcairn, E. Chi Fru, P. Nomikou, A. Argyraki, M. Ivarsson, Adrian A. Finch, Anouk M. Borst, William Hutchison, Nicola J. Horsburgh, Tom Andersen, Siri Simonsen, Hamidullah Waizy, Norman Moles, Martin Smith, Steven P. Hollis, Julian F. Menuge, Aileen L. Doran, Paul Dennis, Brett Davidheiser-Kroll, Alina Marca, Jamie Wilkinson, Adrian Boyce, John Güven, Steven P. Hollis, Julian F. Menuge, Aileen L. Doran, Stephen J. Piercey, Mark R. Cooper, J. Stephen Daly, Oakley Turner, Brian McConnell, Hannah S. R. Hughes, Hannah S. R. Hughes, Magdalena M. Matusiak-Małek, Iain McDonald, Ben Williamson, James Williams, Guy Dishaw, Harri Rees, Roger Key, Simon Bate, Andy Moore, Katie McFall, Iain McDonald, Dominque Tanner, Manuel Keith, Karsten M. Haase, Daniel J. Smith, Reiner Klemd, Ulrich Schwarz-Schampera, Wolfgang Bach, Sam J Walding, Gawen RT Jenkin, Daniel James, David Clark, Lisa Hart-Madigan, Robin Armstrong, Jamie Wilkinson, Gawen RT Jenkin, Hugh Graham, Daniel J Smith, Andrew P Abbott, David A Holwell, Eva Zygouri, Robert C Harris, Christopher J Stanley, Hannah L.J. Grant, Mark D. Hannington, Sven Petersen, Matthias Frische, Fei Zhang, Ben J. Williamson, Hannah Hughes, Joshua Smiles, Manuel Keith, Daniel J. Smith, Chetan Nathwani, Robert Sievwright, Jamie Wilkinson, Matthew Loader, Daryl E. Blanks, David A. Holwell, W.D. Smith, J.R. Darling, D.S. Bullen, R.C. Scrivener, Aileen L. Doran, Steven P. Hollis, Julian F. Menuge, John Güven, Adrian J. Boyce, Oakley Turner, Sam Broom-Fendley, Aoife E Brady, Karen Hudson-Edwards, Oakley Turner, Steve Hollis, Sean McClenaghan, Aileen Doran, John Güven, Emily K. Fallon, Richard Brooker, Thomas Scott
Ore minerals of the Bakyrchik deposit form five paragenetic assemblages: early melnikovite- pyrite-pyrrhotite-marcasite (with nickeline and pentlandite); ore stage gold-pyrite-arsenic pyrite (with cubanite and gersdorffite), gold-quartz- polymetallic (fahlore, chalcopyrite, galenite, and sphalerite), and gold-quartz-carbonate-scheelite-chalcopyrite (with breunnerite, dolomite, aikinite, free gold); late quartz-carbonate-antimonite-tetrahedrite (with marcasite, refractory gold). Gold-pyrite-arsenic pyrite assemblage occurs widely, whereas melnikovite-pyrite-pyrrhotite-marcasite, melnikovite-pyrite-pyrrhotite-marcasite and gold-quartz-carbonate-scheelite-chalcopyrite assemblages are developed at deeper levels, gold-quartz- polymetallic and quartz-carbonate-antimonite-tetrahedrite assemblages are confined to upper and medium horizons of the deposit. Impregnated and vein-impregnated gold-pyrite-arsenic pyrite assemblages are the most significant (90%) in total mass of sulphides and total gold balance (Halls et al. 2004).