Explore chapters and articles related to this topic
Radiometry
Published in Antoni Rogalski, Infrared and Terahertz Detectors, 2019
The list of potential materials that could be used to manufacture infrared refractive optics is quite long: Amorphous Material Transmitting Infrared Radiation (AMTIR-1), barium fluoride (BaF2), cadmium telluride (CdTe), calcium fluoride (CaF2), cesium bromide (CsBr), cesium iodide (CsI), fused silica-IR grade, gallium arsenide (GaAs), germanium (Ge), lithium fluoride (LiF), magnesium fluoride (MgF2), potassium bromide (KBr), potassium chloride (KCl), silicon (Si), sodium chloride (NaCl), thallium bromoiodide (KRS-5), zinc selenide (ZnSe), zinc sulfide (ZnS). However, only the most popular materials used to manufacture refractive optical objectives for thermal imagers will be discussed here. Basic parameters of these materials are presented in Table 1.4 and their IR transmission is shown in Figure 1.18.
Infrared devices and techniques
Published in John P. Dakin, Robert G. W. Brown, Handbook of Optoelectronics, 2017
Antoni Rogalski, Krzysztof Chrzanowski
The list of potential materials that could be used to manufacture IR refractive optics is quite long: AMTIR-1 (amorphous material transmitting infrared radiation), barium fluoride (BaF2), cadmium telluride (CdTe ), calcium fluoride (CaF2), cesium bromide (CsBr), cesium iodide (CsI), fused silica-IR grade, gallium arsenide (GaAs), germanium (Ge), lithium fluoride (LiF), magnesium fluoride (MgF2), potassium bromide (KBr), potassium chloride (KCl), silicon (Si), sodium chloride (NaCl), thallium bromoiodide (KRS-5), zinc selenide (ZnSe), and zinc sulfide (ZnS). However, in this chapter, only the most popular materials used to manufacture refractive optical objectives for thermal imagers will be discussed. The basic parameters of these materials are presented in Table 18.4 and their IR transmission is shown in Figure 18.7.
Properties of the Elements and Inorganic Compounds
Published in W. M. Haynes, David R. Lide, Thomas J. Bruno, CRC Handbook of Chemistry and Physics, 2016
W. M. Haynes, David R. Lide, Thomas J. Bruno
Name Aluminum Aluminum bromide Aluminum chloride Aluminum iodide Antimony (gray) Antimony(III) chloride Antimony(III) iodide Antimony(V) chloride Arsenic (gray) Barium Barium bromide Barium chloride Barium fluoride Barium iodide Beryllium Beryllium chloride Beryllium fluoride Bismuth Bismuth tribromide Bismuth trichloride Boron Cadmium Cadmium bromide Cadmium chloride Cadmium iodide Calcium Calcium bromide Calcium chloride Calcium fluoride Calcium iodide Cerium Cerium(III) chloride Cerium(III) fluoride Cesium Cesium bromide Cesium chloride Cesium fluoride Formula mp/ºC Al 660.323 AlBr3 97.5 AlCl3 AlI3 Sb SbCl3 SbI3 SbCl5 As Ba BaBr2 BaCl2 BaF2 BaI2 Be BeCl2 BeF2 Bi BiBr3 BiCl3 B Cd CdBr2 CdCl2 CdI2 Ca CaBr2 CaCl2 CaF2 CaI2 Ce CeCl3 CeF3 Cs CsBr CsCl CsF 192.6 188.28 630.628 73.4 171 4 817 727 857 961 1368 711 1287 415 552 271.402 219 234 2077 321.069 568 568 388 842 742 775 1418 783 799 807 1430 28.5 636 646 703 k/g cm-3 /g cm-3 ºC-1 tmax/ ºC 2.377 0.000311 917 2.647 0.002435 267 1.302 3.223 6.53 2.681 4.171 2.37 5.22 3.338 3.991 3.174 4.14 4.26 1.690 1.54 1.96 10.05 4.76 3.916 2.08 7.996 4.075 3.392 4.396 1.378 3.111 2.085 2.52 3.443 6.55 3.25 4.659 1.843 3.133 2.79 3.649 0.002711 296 0.0025 240 0.00067 745 0.002293 77 0.002483 322 0.001869 77 0.000544 0.000299 0.000924 0.000681 0.000999 0.000977 0.00011 0.0011 0.000015 0.00135 0.002637 0.0023 0.001218 0.00108 0.00082 0.001117 0.000230 0.0005 0.000422 0.000391 0.000751 0.000710 0.00092 1550 900 1081 1727 975 473 850 800 927 350 500 720 807 700 1484 791 950 2027 1028 1460 950
The specific features of low-temperature thermal properties of the heterovalent (BaF2)0.59(TmF3)0.41 solid solution
Published in Philosophical Magazine, 2022
Vladimir Novikov, Аnton Morozov, Аleksandr Matovnikov, Nikolay Mitroshenkov, Sergey Kuznetsov, Angelina Volchek, Boris Kornev
Barium difluoride, BaF2, has a cubic fluorite crystal structure with space group Fmm and four formula units per unit cell. The metal atoms are located at the vertices and centres of the faces of the elementary cube and each fluorine atom is connected to the metal atoms at the vertices of the cube with three atoms at the centres of the faces by tetrahedral bonds, as shown in Figure 1 [1–3].