Explore chapters and articles related to this topic
Platinum-group minerals from zoned clinopyroxenite-dunite massifs, Aldan Shield, Russia: genetic constraints inferred from osmium-isotope study
Published in Adam Piestrzyński, Mineral Deposits at the Beginning of the 21st Century, 2001
K.N. Malitch, O.A.R. Thalhammer, I.Yu. Badanina, A.I. Kostoyanov
The age and genesis of ultramafic bodies in zoned clinopyroxenite-dunite massifs hosting remarkable platinum-group element (PGE)-mineralization are a subject of vivid discussions since decades. Re-Os is potentially the best isotope system to determine mantle-separation ages for igneous rocks. Since osmium is one of the six PGE, Os-isotopes are also particular worthy (1) for the study of the genesis of platinum-group minerals (PGM) and (2) for distinguishing between crustal and mantle sources for PGE (Allegre & Luck 1980, Hart & Kinloch 1989, Hattori & Cabri 1992, Malitch et al., 2000, among others).
Deformation and mineralisation in the Scotty Creek Basin, Agnew district, Eastern Goldfields, Western Australia: evidence for D1- and D3-related gold mineralisation
Published in Australian Journal of Earth Sciences, 2019
S. Jones, A. Waters, P. M. Ashley
However, as shown in the Leonora and Kalgoorlie mining camps, there is ample field evidence to relate gold mineralisation to early D1 deformation as well as subsequent compressional events (e.g. Bateman & Hageman, 2004; Bateman & Jones, 2015; Bateman et al., 2001; Jones, 2014). Throughout the EGT the D1 event is thought to range in age from 2672 to 2660 Ma based on the age of granitic rocks that display the strong S1 foliation (Czarnota et al.,2010). In the Agnew district, Thebaud et al. (2018) provide two new U–Pb and Re–Os ages for gold mineralisation, with the Songvang deposit dated at 2661 ± 8 Ma and the Turret deposit dated at 2622 ± 12 Ma. Although this is such a large age range, Thebaud et al. (2018) still relate all gold mineralisation at Agnew to east–west- to southeast–northwest-directed compression.
Abstracts from the 2017–2018 Mineral Deposits Studies Group meeting
Published in Applied Earth Science, 2018
L. Santoro, St. Tshipeng Yav, E. Pirard, A. Kaniki, G. Arfè, N. Mondillo, M. Boni, M. Joachimski, G. Balassone, A. Mormone, A. Cauceglia, N. Mondillo, G. Balassone, M. Boni, W. Robb, T. L. Smith, David Currie, Finlay Stuart, John Faithfull, Adrian Boyce, N. Mondillo, C. Chelle-Michou, M. Boni, S. Cretella, G. Scognamiglio, M. Tarallo, G. Arfè, F. Putzolu, M. Boni, N. Mondillo, F. Pirajno, N. Mondillo, C. Chelle-Michou, M. Boni, S. Cretella, G. Scognamiglio, M. Tarallo, G. Arfè, Saltanat Aitbaeva, Marina Mizernaya, Boris Dyachkov, Andrew J Martin, Iain McDonald, Christopher J MacLeod, Katie McFall, Hazel M Prichard, Gawen R T Jenkin, B. Kennedy, I. McDonald, D. Tanner, L. Longridge, A. M. Borst, A. A. Finch, H. Friis, N. J. Horsburgh, P. N. Gamaletsos, J. Goettlicher, R. Steininger, K. Geraki, Jonathan Cloutier, Stephen J. Piercey, Connor Allen, Craig Storey, James Darling, Stephanie Lasalle, A. Dobrzanski, L. Kirstein, R. Walcott, I. Butler, B. Ngwenya, Andrew Dobrzanski, Simon Howard, Lore Troalen, Peter Davidson, Rachel Walcott, Drew Drummond, Jonathan Cloutier, Drew Drummond, Adrian Boyce, Robert Blakeman, John Ashton, Eva Marquis, Kathryn Goodenough, Guillaume Estrade, Martin Smith, E. Zygouri, S. P. Kilias, T. Zack, I. Pitcairn, E. Chi Fru, P. Nomikou, A. Argyraki, M. Ivarsson, Adrian A. Finch, Anouk M. Borst, William Hutchison, Nicola J. Horsburgh, Tom Andersen, Siri Simonsen, Hamidullah Waizy, Norman Moles, Martin Smith, Steven P. Hollis, Julian F. Menuge, Aileen L. Doran, Paul Dennis, Brett Davidheiser-Kroll, Alina Marca, Jamie Wilkinson, Adrian Boyce, John Güven, Steven P. Hollis, Julian F. Menuge, Aileen L. Doran, Stephen J. Piercey, Mark R. Cooper, J. Stephen Daly, Oakley Turner, Brian McConnell, Hannah S. R. Hughes, Hannah S. R. Hughes, Magdalena M. Matusiak-Małek, Iain McDonald, Ben Williamson, James Williams, Guy Dishaw, Harri Rees, Roger Key, Simon Bate, Andy Moore, Katie McFall, Iain McDonald, Dominque Tanner, Manuel Keith, Karsten M. Haase, Daniel J. Smith, Reiner Klemd, Ulrich Schwarz-Schampera, Wolfgang Bach, Sam J Walding, Gawen RT Jenkin, Daniel James, David Clark, Lisa Hart-Madigan, Robin Armstrong, Jamie Wilkinson, Gawen RT Jenkin, Hugh Graham, Daniel J Smith, Andrew P Abbott, David A Holwell, Eva Zygouri, Robert C Harris, Christopher J Stanley, Hannah L.J. Grant, Mark D. Hannington, Sven Petersen, Matthias Frische, Fei Zhang, Ben J. Williamson, Hannah Hughes, Joshua Smiles, Manuel Keith, Daniel J. Smith, Chetan Nathwani, Robert Sievwright, Jamie Wilkinson, Matthew Loader, Daryl E. Blanks, David A. Holwell, W.D. Smith, J.R. Darling, D.S. Bullen, R.C. Scrivener, Aileen L. Doran, Steven P. Hollis, Julian F. Menuge, John Güven, Adrian J. Boyce, Oakley Turner, Sam Broom-Fendley, Aoife E Brady, Karen Hudson-Edwards, Oakley Turner, Steve Hollis, Sean McClenaghan, Aileen Doran, John Güven, Emily K. Fallon, Richard Brooker, Thomas Scott
The aims of this project are to determine the origin of Aynak copper resources (Central, Western, North Aynak-Taghar), located in the Kabul Basin (District), and to describe the geochemistry, mineralogy and distribution of the copper ore in these deposits. To achieve this, a total of 92 rock specimens were collected, mainly comprising drill cores. The samples have been analyzed using XRF; optical and scanning electron microscopy; sulphide geochemistry from partial acid dissolution followed by ICP-MS; fluid inclusion microscopy for vein samples; stable isotope analyses of sulphur in sulphides and geochronological analysis using the pyrite Re-Os method. Results from these analyses have enabled consideration of the sources of sulphur and metal components in the mineralising fluids and the processes of ore formation.
Elemental Characterization of Neutron-Irradiated Tungsten Using the GD-OES Technique
Published in Fusion Science and Technology, 2019
Nathan C. Reid, Lauren M. Garrison, Chase N. Taylor, Jean Paul Allain
Tungsten undergoes a transmutation reaction under neutron irradiation. Neutronic captures by W cause the formation of the neighboring elements rhenium (Re) and osmium (Os). Ternary phases of W-Re-Os were precipitated in samples exposed to the large thermal neutron flux in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The Re/Os clusters are considered to be the main contributor to degradation of thermomechanical properties of W (Ref. 4). The W first undergoes a neutron-gamma reaction by thermal neutron capture: