Explore chapters and articles related to this topic
Model Prediction of Marine Oil Spills
Published in Lin Mu, Lizhe Wang, Jining Yan, Information Engineering of Emergency Treatment for Marine Oil Spill Accidents, 2019
Lin Mu, Lizhe Wang, Jining Yan
The horizontal transport speed of oil particles is u, and v includes the speed of the effects of advection, wind-driven surface current and wind on the oil film; the transport speed w of oil particles in vertical direction includes floatation speed and sedimentation speed of oil particles and vertical current velocity in ocean dynamics; turbulent diffusion terms lx, ly and lz can be obtained from Formula 4.22 or 4.23; and turbulent diffusion coefficient is corresponding to the 3D fluid field. Therefore, the transport position of any oil particle can be calculated as per Formula 4.22, and a large number of oil particles can express the behavior process of the oil spill. The behavior process of the oil spill can be described through calculating the positions of a large number of particles.
Sensitivity analysis of vertical mixing schemes in a regional domain using modular Ocean model
Published in ISH Journal of Hydraulic Engineering, 2023
Mousumi Sarkar, Siddhesh Tirodkar, Rajesh Chauhan, Srinivas L. Vellala, Sridhar Balasubramanian, Manasa R. Behera
Indian Ocean (IO) monsoon circulation and associated current has been a subject of significant interest over the past few decades. Northern Indian Ocean (NIO) basin faces seasonal wind reversal twice a year: south-westerly wind flows during June–September (known as south-west monsoon, SWM) and north-easterly wind flows during December–February (known as north-east monsoon, NEM) (Schott and McCreary 2001; Shankar et al. 2002). These winds shape the weather and climate conditions over the Indian subcontinent, by influencing the Indian Ocean dynamics including Arabian Sea (AS) and Bay of Bengal (BoB). The winds over NIO impact the ocean currents, coastal up-welling, sea surface temperature (SST), sea surface salinity (SSS), upper ocean mixing and associated ocean dynamics (Shetye et al. 1991; Schott and McCreary 2001; Shankar et al. 2002; Jana et al. 2018). Both the model-based studies and observations reveal that Summer Monsoon Currents (SMC), Winter Monsoon Currents (WMC), East India Coastal Current (EICC, in BoB), West India Coastal Current (WICC, in AS) are driven by the wind acted upon the surface layer of the Ocean. In NIO, the SMC flows eastward during SWM and WMC flows westward during NEM. The strong seasonal easterly and westerly winds lead to a complex vertical structure in the bay. Along with the wind-driven ocean current and related upwelling, precipitation and river runoff also play an important role in defining the vertical structure of temperature and salinity, and hence, the stratification of the ocean (Shetye et al. 1996; Howden and Murtugudde 2001; Behara and Vinayachandran 2016; Jana et al. 2018).
Copernicus Marine Service Ocean State Report, Issue 4
Published in Journal of Operational Oceanography, 2020
Karina von Schuckmann, Pierre-Yves Le Traon, Neville Smith, Ananda Pascual, Samuel Djavidnia, Jean-Pierre Gattuso, Marilaure Grégoire, Glenn Nolan, Signe Aaboe, Enrique Álvarez Fanjul, Lotfi Aouf, Roland Aznar, T. H. Badewien, Arno Behrens, Maristella Berta, Laurent Bertino, Jeremy Blackford, Giorgio Bolzon, Federica Borile, Marine Bretagnon, Robert J.W. Brewin, Donata Canu, Paola Cessi, Stefano Ciavatta, Bertrand Chapron, Thi Tuyet Trang Chau, Frédéric Chevallier, Boriana Chtirkova, Stefania Ciliberti, James R. Clark, Emanuela Clementi, Clément Combot, Eric Comerma, Anna Conchon, Giovanni Coppini, Lorenzo Corgnati, Gianpiero Cossarini, Sophie Cravatte, Marta de Alfonso, Clément de Boyer Montégut, Christian De Lera Fernández, Francisco Javier de los Santos, Anna Denvil-Sommer, Álvaro de Pascual Collar, Paulo Alonso Lourenco Dias Nunes, Valeria Di Biagio, Massimiliano Drudi, Owen Embury, Pierpaolo Falco, Odile Fanton d’Andon, Luis Ferrer, David Ford, H. Freund, Manuel García León, Marcos García Sotillo, José María García-Valdecasas, Philippe Garnesson, Gilles Garric, Florent Gasparin, Marion Gehlen, Ana Genua-Olmedo, Gerhard Geyer, Andrea Ghermandi, Simon A. Good, Jérôme Gourrion, Eric Greiner, Annalisa Griffa, Manuel González, Annalisa Griffa, Ismael Hernández-Carrasco, Stéphane Isoard, John J. Kennedy, Susan Kay, Anton Korosov, Kaari Laanemäe, Peter E. Land, Thomas Lavergne, Paolo Lazzari, Jean-François Legeais, Benedicte Lemieux, Bruno Levier, William Llovel, Vladyslav Lyubartsev, Pierre-Yves Le Traon, Vidar S. Lien, Leonardo Lima, Pablo Lorente, Julien Mader, Marcello G. Magaldi, Ilja Maljutenko, Antoine Mangin, Carlo Mantovani, Veselka Marinova, Simona Masina, Elena Mauri, J. Meyerjürgens, Alexandre Mignot, Robert McEwan, Carlos Mejia, Angélique Melet, Milena Menna, Benoît Meyssignac, Alexis Mouche, Baptiste Mourre, Malte Müller, Giulio Notarstefano, Alejandro Orfila, Silvia Pardo, Elisaveta Peneva, Begoña Pérez-Gómez, Coralie Perruche, Monika Peterlin, Pierre-Marie Poulain, Nadia Pinardi, Yves Quilfen, Urmas Raudsepp, Richard Renshaw, Adèle Révelard, Emma Reyes-Reyes, M. Ricker, Pablo Rodríguez-Rubio, Paz Rotllán, Eva Royo Gelabert, Anna Rubio, Inmaculada Ruiz-Parrado, Shubha Sathyendranath, Jun She, Karina von Schuckmann, Cosimo Solidoro, Emil V. Stanev, Joanna Staneva, Andrea Storto, Jian Su, Tayebeh Tajalli Bakhsh, Gavin H. Tilstone, Joaquín Tintoré, Cristina Toledano, Jean Tournadre, Benoit Tranchant, Rivo Uiboupin, Arnaud Valcarcel, Nadezhda Valcheva, Nathalie Verbrugge, Mathieu Vrac, J.-O. Wolff, Enrico Zambianchi, O. Zielinski, Ann-Sofie Zinck, Serena Zunino
Globally, the ocean system absorbs an important fraction of anthropogenic CO2 from the atmosphere. The global estimate for 2016 was 2.65 PgC/year (Perruche et al. 2018) which accounts for 25% of the anthropogenic emissions for the same period, estimated by Le Quéré et al. (2018) in 10.8 GtC/year. Considering only the total fossil fuel and cement-manufacturing emissions in the period from 1800 to 1994 ocean carbon sink was responsible for the sequestration about 48% of such emissions (Sabine et al. 2004). These values underline the relevance of the ocean carbon sequestration service (Beaumont et al. 2007) which is sustained by the interaction of three main categories of functions: the physics that governs ocean water advection and mixing, the biogeochemistry, which is defined by the trophic interactions among primary and secondary producers, and the carbonate chemistry, which directly responds to CO2 air concentration (Gattuso et al. 2015). Due to the dynamic nature of seas and oceans, the carbon sequestration service is variable over time and space, responding not only to the atmospheric CO2 concentration, but also to changes in ocean dynamics and properties, such as the dynamics of dense water formation and upwelling, the variability of temperature and salinity, and the variability of primary producers (e.g. phytoplankton and macrophytes). The contribution of these processes to carbon sequestration, is still poorly known, and, due to the public nature of such service, poorly captured by the markets.
Copernicus Marine Service Ocean State Report
Published in Journal of Operational Oceanography, 2018
Karina von Schuckmann, Pierre-Yves Le Traon, Neville Smith, Ananda Pascual, Pierre Brasseur, Katja Fennel, Samy Djavidnia, Signe Aaboe, Enrique Alvarez Fanjul, Emmanuelle Autret, Lars Axell, Roland Aznar, Mario Benincasa, Abderahim Bentamy, Fredrik Boberg, Romain Bourdallé-Badie, Bruno Buongiorno Nardelli, Vittorio E. Brando, Clément Bricaud, Lars-Anders Breivik, Robert J.W. Brewin, Arthur Capet, Adrien Ceschin, Stefania Ciliberti, Gianpiero Cossarini, Marta de Alfonso, Alvaro de Pascual Collar, Jos de Kloe, Julie Deshayes, Charles Desportes, Marie Drévillon, Yann Drillet, Riccardo Droghei, Clotilde Dubois, Owen Embury, Hélène Etienne, Claudia Fratianni, Jesús García Lafuente, Marcos Garcia Sotillo, Gilles Garric, Florent Gasparin, Riccardo Gerin, Simon Good, Jérome Gourrion, Marilaure Grégoire, Eric Greiner, Stéphanie Guinehut, Elodie Gutknecht, Fabrice Hernandez, Olga Hernandez, Jacob Høyer, Laura Jackson, Simon Jandt, Simon Josey, Mélanie Juza, John Kennedy, Zoi Kokkini, Gerasimos Korres, Mariliis Kõuts, Priidik Lagemaa, Thomas Lavergne, Bernard le Cann, Jean-François Legeais, Benedicte Lemieux-Dudon, Bruno Levier, Vidar Lien, Ilja Maljutenko, Fernando Manzano, Marta Marcos, Veselka Marinova, Simona Masina, Elena Mauri, Michael Mayer, Angelique Melet, Frédéric Mélin, Benoit Meyssignac, Maeva Monier, Malte Müller, Sandrine Mulet, Cristina Naranjo, Giulio Notarstefano, Aurélien Paulmier, Begoña Pérez Gomez, Irene Pérez Gonzalez, Elisaveta Peneva, Coralie Perruche, K. Andrew Peterson, Nadia Pinardi, Andrea Pisano, Silvia Pardo, Pierre-Marie Poulain, Roshin P. Raj, Urmas Raudsepp, Michaelis Ravdas, Rebecca Reid, Marie-Hélène Rio, Stefano Salon, Annette Samuelsen, Michela Sammartino, Simone Sammartino, Anne Britt Sandø, Rosalia Santoleri, Shubha Sathyendranath, Jun She, Simona Simoncelli, Cosimo Solidoro, Ad Stoffelen, Andrea Storto, Tanguy Szerkely, Susanne Tamm, Steffen Tietsche, Jonathan Tinker, Joaquín Tintore, Ana Trindade, Daphne van Zanten, Luc Vandenbulcke, Anton Verhoef, Nathalie Verbrugge, Lena Viktorsson, Karina von Schuckmann, Sarah L. Wakelin, Anna Zacharioudaki, Hao Zuo
Monitoring changes of subsurface salinity (Section 1.1) is essential, in particular, due to its link to changes in the hydrological cycle of the Earth (Curry et al. 2003; Durack et al. 2016); their essential role for changes in ocean dynamics (O’Kane et al. 2016) such as water masses formation (Kuhlbrodt et al. 2007), regional halosteric sea level change (Durack et al. 2014; Llovel and Lee 2015) and salt/freshwater transport (Vargas-Hernandez et al. 2015); and their impact on marine biodiversity (Lenoir et al. 2011).